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Introduction: crystallography

crystallography = science of crystals

External shape + internal structure + growth + physical properties of crystals

7

Crystallography = study the matter which is crystallized

— determine the positions of the atoms inside
— X-ray or neutron (or electronic) diffraction techniques

Polycrystal or Single crystal ?
(or powder)

/ \

Each grain of a polycrystal is thus a single crystal




Introduction : The two types of symmetries in crystals

Symmetry group: set of symmetry operations that leave the atomic positions unchanged

4 )

Periodicity of the physical properties of crystals: solid state physics

 Phonons, magnons, ...
- Diffraction

\_ J
Anisotropy of the physical properties of crystals: macroscopic physics
- reflects the point symmetry of the crystal.

. External shape of crystals (natural faces)

\ . Electric conductivity, optics, mechanical and magnetic properties, ... )
To describe the crystals: To determine the crystal structure:
geometry, symmetry, atomic coordinates, .. diffraction

direct space reciprocal space




Outline

part I: CRYSTALLOGRAPHY IN DIRECT SPACE

I.1. Orientation symmetry
Elementary point symmetries
How to obtain and name all crystallographic point groups?
Examples of point groups
The 32 point groups and 11 Laue classes

I.2. Translation symmetry
Lattice and motif, Unit cell
The orientation symmeftries of lattices:
the 6 conventional cells, 7 crystal systems and 14 Bravais lattices
Rows and net planes

I.3. Space group symmetry
Glide planes and screw axes
The 230 space groups
The International Tables for Crystallography

Voir fichier

Aperiodic crystals: superspace groups
P Y persp grotp Compléments

I.4. Beyond basic crystallography
Magnetic structures: magnetic point groups and space groups




Outline

part IT: DIFFRACTION - CRYSTALLOGRAPHY IN RECIPROCAL SPACE

IT.1. The reciprocal space
Definition
Examples
First Brillouin zone
Properties

IT.2. X-ray and neutron diffraction by a crystal

Diffraction condition

Diffraction by an atom: scattered amplitude

Diffraction by a crystal: structure factor

Symmetry and extinction rules

Beyond basic crystallography: aperiodic crystals and magnetic structures ‘ Voir
fichier

IT.4. Experiments Compléments

How to solve a structure

Technique 1: powder diffraction

Technique 2: single-crystal Laue diffraction

Technique 3: single-crystal (four circle / normal beam) diffraction




I.1. Orientation Symmetry: Elementary point symmetries

At microscopic (to within a tfranslation in some cases) & macroscopic scale:
3 orientation symmeftries called

These operations are isometries that leave at least one point fixed.

/ (through a point) \ / (around an axis) \

. . . 2
— centrosymmeftric crysta/ Rotation of order n = rotation by ¢ = 77[
A Z A_IZ
Xy Ze e ®xy.z
S X\ vz n
O\\\ > O > y

\ X b-x,-y,-z/ \ X J




I.1. Orientation Symmetry: Elementary point symmetries

4 A

(around an axis and through a point)

Z 5

/¥\'X, y, Z

Q
: Y
\

e ._XI’ _yl, _Zl

-

(through a mirror planeﬁ

Z

®x y z
O 1

o

®X Yy -z

X

. /

Note that: m=2 /

o /

Rotations compatible with the translation symmetry = those of orders 1,2, 3,4, 6

> 10 elementary operations: point groups 1,2,3,4,6,1,2=m,3,4,6

1 1

Proper Improper




I.1. Orientation Symmetry: How to obtain and name all point groups ?

Group structure
Operation: x (apply successively 2 sym. op.); Closure; associativity:;
Neutral element: 1 (do nothing); Inverse: n > -n(rotate in the other way)

How to obtain all various crystallographic point groups (= crystal classes) ?
Combine these 10 elementary symmetry operations, with the following constraints:
- all symmetry elements go through a common poinft,
- point group compatible with translation symmetry
- constraints between the orientations of the various symmetry operations

Notation of the point groups: 1- International (Hermann-Mauguin) symbols
Symmetry elements along 1, 2 or 3 non equivalent directions (primary, secondary, tertiary),
ordered with decreasing or equal degree of symmetry (except for 2 cubic point groups)

The direction of a rotation is given by its axis

The direction of a mirror is given by its normal

‘'n/m' = axis nand mirror along the same direction Examples:
(7.e. mirror plane L to axis A)

— used for crystallography




I.1. Orientation Symmetry: How to obtain and name all point groups ?

Notation of the point groups: 2- Schoenflies symbols

Cyclic n-fold rotation axis (n=1, 2, 3, 4, 6)
Dihedral, or two-sided  ~#-fold rotation axis plus #twofold axes L to that axis

subscript A: addition of a mirror plane L to the n-fold axis (¢,,, D,,)

subscript v: addition of a mirror plane // to the n-fold axis (¢, D,,)

subscript d': addition of a mirror plane // to the n-fold axis and bisecting
the angle between the axes 2 | to the #fold axis (0,,)

Spiegel = Mirror 2n-fold rotoinversion axis (2n= 2, 4, 6)
Tetrahedral symmetry of a tetrahedron
with (7,) or without ( 7) improper rotations,

= Twith the addition of an inversion

Octahedral symmetry of an octahedron (or cube)
with (O,) or without (O) improper operations

Other notations:

— used for spectroscopy




Examples: point groups of molecules

NH,

SF

Primary direction

direction

Secondary direction

LN

Primary
direction

Secondary

I.1. Orientation Symmetry: Examples of point groups

AXis 3
3 equivalent mirrors

U
Point group: 3m

axis 4 and mirrors
axis 3

b 4 5
Point P —3—
oint group

4
m
m

— - m3




I.1. Orientation Symmetry: The 32 point groups and 11 Laue classes

Order of the point symmetry along the:

primary direct®

secondary direct®

tertiary direct®

Point groups and( Laue groups

_ _ - 11
2 - - 2,m2/m
2 2 2 222, 2mm, 22z
mmm
3 = - 3,3 >
3 2 - 32,3m, (3=
m
4 3 3 4.4 4/m
422 4mm, 42m ERCRc
4 2 2 ' ' Ay
6 _ _ 6,6 (6/m
622, 6mm, 62m 652
6 2 2 ' ' N mom
2 3 _ 23, 25
7 a3
4 3 2 432,43 m| —3 —
m m




I.1. Orientation Symmetry: The 32 point groups and 11 Laue classes

International vs Schoenflies symbols
(table 10.1.2.4. from the International Tables Trigonal 3 5 =
for Crystallography, Volume A) J e CilS6)
32 32 Ds
Point group
) International symbol . 3m 3m Csy
System used in Schoenflies
this volume Short Full symbol 3m §E D3y
m
Triclinic 1 1 C
1 1 Ci(S>) Hexagonal 6 6 )
Monoclinic 2 ) C» b (z Can
g
mn fg Cs(Cip) 6/m pm Cen
Z/m E Cg/, 622 622 Db
6mm Omm Cey
Orthothombic | 222 222 Dy (V) S S D“
mm?2 1;111522 Cay - 62 2 =
2 6/ mimn i Dy
mmm pr— Dy, (Vy) [ mumm nmm B
1 2
Tetragonal 4 4 Cy =L =2 &3 It
_ _ . - y
+ j S4 n3 =3 T,
m
4/m = Cyp
432 432 O
422 4272 Dy
im m imm Cy B A3 T
42m 42m D>q(Vy)
422 mam iig )
4fmimm il Dy, m~ m :




I.2. Translation Symmetry: Lattice and motif

At the atomic scale, 3 translation vectors T that put the crystallographic structure in
coincidence with itself.

T =ud+vb+wc with u, v, wintegers

d,b and ¢ are called the and the volume they define is called the

Crystal = Lattice + Motif

The set of extremities of the T vectors At each lattice node,
define an abstract network of points (= nodes): one associates a group of atoms:
the : the

The knowledge of the lattice (basis vectors d,b,¢) and of the motif (nature and positions
X, y, zof the atoms in the cell) completely characterizes the crystalline structure.




I.2. Translation Symmetry: Unit cell

The allows to pave the space with no empty space nor overlap,
by applying the lattice translations.

Examples at 2D:

Rotation of order 4: Rotation of order 5:

Compatible with the translation symmetry  not compatible with translation symmetry
- quasicrystals




I.2. Translation Symmetry: Unit cel/

lengths of the angles between them:
unit translations: ~
a a = (b ; 6)
N
b p=(c.a
-~
& y =(d,b)

of a unit cell = Number of lattice nodes (and thus of motifs) per unit cell

How to count the number of lattice nodes per unit cell?
— each lattice node counts for 1/n, with nthe number of unit cells o which it belongs.

m=1

For a given lattice, all primitive unit cells have the same volume: I/ = (6,5,6) = (a A 5).6
m= 2,3, .. (doubly, triply, ... primitive)

Volume: V,,=mV,

These cells are used only when more symmetrical than any primitive cell of the lattice.




I.2. Translation Symmetry: 6 conventional cells and 7 crystal systems

Translation symmetry &  Orientation symmetry

N "4

The crystals can be classified into and
each of them having a characteristic orientation symmetry.

The 6 conventional cells are, from the lowest to the highest symmetric one:

a | triclinic a+ b+ ¢ a#f#y

m | monoclinic a# b# ¢ a=y=90° B>90°
o | orthorhombic a#+ b# ¢ a=pB=y=90°

1 | tetragonal or quadratic | a= b=+ c¢ a=f=y=90°

A | hexagonal * a=b#c¢ a=£=90° y=120°
¢ | cubic a=b=c¢ a=pB=y=90°

* The hexagonal cell splits in two crystal systems: frigonal (axis 3) and hexagonal (axis 6);
the others are the same.




I.2. Translation Symmetry

Point groups

. Crystal system vs point group

Crystal system primary | secondary | tertiary
and (Laue classes direction | direction | direction
monoclinic 11 - . _
triclinic 2, m2/m b - -
orthorhombic 222,2mm,mmm a b c
: 3(3
trigonal 32 3m(3m C a, b, -a-b -
Tetragonal 4.4 (4/m
or quadratic | 422, 4mm,42m 4/ mmm ¢ & G, @
hexagonal 6,6 (6/m B c a b,a+b | 2a+b, ..
622,6mm,62m6/mmm
cubic o373 a b c a+b+c, .| a+b

432, 43m(m3m




I.2. Translation Symmetry: The 14 Bravais lattices

Classification in 14 Bravais lattices (Bravais, 1848):

, built from the 6 conventional cells,

, by adding some nodes in the former cells, provided
no symmetry element is lost and there exists no primitive cell having the same symmetry.

Symbol lattice type multiplicity
P primitive 1
I body centered 2
F all-face centered 4
one-face centered:
A B C |(b,c)(ac),(d,b) 2
respectively
rhombohedrally
centered: additional
R nodes at 1/3 and 2/3 3

of the diagonal of
the hexagonal cell
(trigonal system)

NB: the primitive cell of the AR cell is a
(a=b=c a=p=y=z90°

@ nodes in planes O et 1
@ nodes in plane 1/3
O nodes in plane 2/3




I.2. Translation Symmetry: The 14 Bravais lattices

conventional

Lattice types

cell P I F C R
| w/
triclinic ca\P __
A
monoclinic

orthorhombic

tetragonal

hexagonal

NB: for centered lattices,
3 additional lattice translations

Example: I lattice

cubic

T=ud+vb+weé
7:'=7:+%(6+|5+6)

with v, v, w integers




I.2. Translation symmetry: Rows and net planes

e Family of [uvw] rows e Family of (AA/) net planes
One can group all lattice nodes into One can group all lattice nodes into
parallel equidistant rows noted [uviw] parallel equidistant net planes noted (44/)
along £i,,,, = uG +vb +wc spaced by dj, such as Ax+ ky+ [z=m
N,,- row parameter d .  d-spacing
u, v, w: coprime integers h, k, /. coprime integers for a Plattice
indices of the row Miller indices
Examples: . Examples:
cubic cell: cubic cell:  (110)

[OOl]ﬁ

(011)
g| [910] 2

0,

b (101
a

[100]

symmetrically equivalent rows: <100> sym. equivalent planes: {110}




I.3. Space group symmetry

Description of the entire crystal = lattice + motif

[Tmnsla‘rions of the lattice 7:] 14 Bravais lattices

+

symmetries acting inside the motif 32 point groups with
(point symmetries combined or without additional
possibly with fractional translations) | glide translations

<

230 SPACE GROUPS
- they describe the symmetry of the microscopic structure of crystals

= "identity card” of a crystal

The 230 space groups allow to classify all crystals.

| home | resources | purchase | contact us | help |

= P A Hypertext Book of

O IS b ose bilbao crystallographic server Crystallographic Space Group

Honia [ The crystallographic site at the Condensed Matter Physics Dept. of niversity of the Basque Count Diagra m S and Tables

International Tables for Crystallography [ Spece Graups 1 Layer Groups | [ Rod Groups | [ Freze Groups 1 Wykof Sets

ISBN: §78-1-4020-4969-3 doi: 10.1107/97809553602060000001 htt p .//i mg Ch e m u Cl a C u k/
http://it.iucr.org http://www.cryst.ehu.es

sgp/mainmenu.htm




I.3. Space group symmetry: &lide planes

e Glide planes

Combination of a reflection (through a plane) and a fractional translation # || plane

Example: glide plane ¢ L a

when applying twice the glide
plane operation, one must recover a
translation vector of the lattice:

PR =2f = p¢  with p<2=p=1

N | Oy




I.3. Space group symmetry: Glide planes

The various symmetry planes and their symbol

graphical symbol

printed | symmetry . .
symbol plane normal to parallel to nature of glide translation
projection plane | projection plane
reflection
& plane (mirror) _I J fone
5 axial 7 |l proj. plane ’ a/2, b/2, or c/2
@51 glideplane | - e Lo respectively
a/2 and b/2, b/2 and ¢/2 or
. double e | a/2 and ¢/2; OR (a+b)/2 and
glide plane c/2 etc ... for tand ¢ systems
diagonal glide | _ . _._ . _. 7| (a+b)/2, (b+c)/2 or (c+a)/2; OR
7 plane (nef) (a+b+c)/2 for tand ¢ systems
1
o ; - (a+b)/4, (b+c)/4 or (cra)/4;
d diamond mpEp i —l\ OR (ab+c)/4
glide plane 7§| for tand c systems




I.3. Space group symmetry: Screw axes

e Screw axes

Combination of a rotation (around an axis /) and a

f || axis

Example: screw axis 71, || €

when applying # times the screw
axis operation, one must recover
a translation vector of the lattice:

_—

PP =nt

pc  with p<n

(@l

p=0,1, ., »nl

S




I.3. Space group symmetry: Screw axes 4,

—

4 axis: ¥ =0

z=0 z=0

Z= \2:0

NN
i
(N[
N
1
@)

4 axis:  =1¢

Z= 3 z=0
43 axis: f =3¢
Z z=3

]
2
i
H=
N
"
o




The various rotation and screw axes and their symbol

, : ture of : . | nature of
printed .| graphic | N9 printed .| graphic
symbol | SYMMETry aXis | "o mbol | The screw |l o) | SYMMeTry axis | ‘g ol | the screw
translation translation
1 Identity none hone 4 Rotation tetrad ‘ hone
1 | Inversion o hone 4, ‘ c/4
Rotation diad ( ) 4, Screw tetrads Q 2c/4
L paper
2 or twofold E hone 4, ‘ 3c/4
rotation axis (Il paper)
4 Inverse tetrad none
Screw diad c/2 <‘>
24 or twofold (L paper) 6 Rotation hexad ‘ hone
i 2 2
srenoxs | [ pagary| V20 82| o |
L paper 6, ® 2c/6
3 Rotation triad A hone 6 ‘ 3c/6
3 Screw hexads
3, | A ¢/3 6, @ 4¢/6
Screw triad
3, A 2¢/3 6 & | 506
3 Inverse triad A hone 6 Inverse hexad @ hone




I.3. Space group symmetry: The 230 space groups

e International (Hermann-Mauguin) symbol of a space group (Ex. P4.,/mmc)

1st letter: PIF A(BorC), R
following letters:

capital letter designing the

o ~

7

symmetry axes (largest s, smallest p) and

Space group symmetries: A Along the primary, secondary and tertiary 1

directions: 3 non equivalent directions of

symmetry planes (m> e> a> b> c> n> d)|[symmetry of the cell (same as for point groups)
. J \.

Conventional cell Primary direction | Secondary direction| Tertiary direction
triclinic only one symbol which denotes all directions of the crystal
monoclinic primary direction only: b6 (15t setting) or ¢ (2" setting) (order 2)
orthorhombic a (order 2) b (order 2) ¢ (order 2)
tet | c (order 4 aand b [110] and [110]
efragond (order 4) (order 2) (order 2)
hexagonal c a, band [110] [210],[120] and [110]
(order 6 or 3) (order 2) (order 2)
il <100» <111> <110>
(order 4 or 2) (order 3) (order 2)




I.3. Space group symmetry: The 230 space groups

Cryst. | Point Space group
system | group No | symbol
a 1 1 2l
1 2 |P1
m 2 3 P2
4 P2,
5 C2
m 6 Pm
i Pec
8 Cm
9 Cc
2/m 10 P2/m
11 P2\/m
12 C2/m
13 P2/c
14 P2i/c
15 C2/c
0 299 16 272
17 P222,
18 P2,2,2
19 B212121
20 C2224
21 C222
22 F222
23 1222
24 1212121
mm2 25 Pmm?2
26 Pmc2,
27 Pec?2
28 Pma?2
29 Pca2,
30 Pnc2
31 Pmn2,
32 Pba2,
33 Pna2,
34 Pnn2
35 Cmm?2
36 Cmc2
37 Cec2
38 Amm?2
39 Aem?2
40 Ama2
41 Aea?
42 Fmm?2
43 Fdd?2
44 Imm?2
45 Iba2
46 Ima2

Cryst. | Point Space group Cryst. | Point Space group
system | group No | system system | group No system
mmm 47 Pmmm 93 P4:22
48 Pnnn 94 P452,2
49 Pcem 95 P4322
50 Pban 96 P452,2
S Pmma 97 1422
52 Pnna 98 14,22
53 Pmna 4dmm 99 P4dmm
54 Pcca 100 Pdbm
55 Pbam 101 Plrem
56 Pccn 102 Pdonm
=V Pbhcm 103 Plcc
58 Pnnm 104 Pdnc
59 Pmmn 105 Pdrme
60 Pbcn 106 Plrbc
61 Phca 107 1dmm
62 Pnma 108 l4em
63 Cmcm 190 141md
64 Cmce 110 l4icd
65 Cmmm 42m | 111 P42m
66 Ceem 1512 P42c
67 Cmme 113 P42im
68 | Ccce 114 | P42ic
69 Fmmm 115 P4m2
70 | Fddd 116 | P4c2
71 Immm 117 P4p2
72 | Ibam 118 P4n2
73 Ibca 119 I4m2
74 Imma 120 142
t 4 75 P4 121 142m
76 | P4 122 142d
77 P4, 4/mmm | 123 P4/mmm
78 P4 124 P4d/mcc
79 14 125 P4/nbm
80 144 126 Pi/nnc
4 81 P4 127 | P4/mbm
82 |14 128 P4/mnc
4/m 83 P4/m 129 P4/nmm
84 P4s/m 130 Pd/nnc
85 P4/n 131 Pdr/mme
86 P4y/n 132 Pdr/mem
87 /m 133 P4s/nbc
88 14/a 134 Pdr/nnm
422 89 P422 135 P4,/mbe
90 P42,2 136 Plr/mnm
91 P4,22 187 Pdr/nmc
92 P4,2,2 138 Phoy/nem

Cryst. | Point Space group
system | group No | system
139 14/mmm
140 I4/mem
141 141/amd
142 14y /acd
h 3 143 23
144 P3,
145 P3>
146 R3
3 147 P3
148 R3
32 149 P312
150 P321
151 P3,12
152 P3,21
153 P3,12
154 P3521
155 R32
3m 156 P3ml
157 P31lm
158 P3cl
159 P3le
160 R3m
161 R3c
3m 162 | P31m
163 P3lec
164 P3ml
165 P3ecl
166 R3m
167 R3c
h 6 168 P6
169 P6;
170 P65
171 P6,
172 P64
173 P65
6 174 P6
6/m 175 P6/m
176 P63/m
622 177 P622
178 P6,22
179 P6522
180 P6:22
181 P6422
182 P6322
6mm 183 Pomm
184 Péce

Cryst. | Point Space group
system | group No | system
185 Pb63cm
186 P63mc
6m2 | 187 P6m?2
188 P6c2
189 P62m
190 P62c
6/mmm | 191 P6/mmm
192 P6/mec
193 P6/mcm
194 P6/mmc
c 23 195 P23
196 F23
197 23
198 P23
199 12,3
m3 200 Pm3
201 Pn3
202 Fm3
203 Fd3
204 m3
205 Pa3
206 la3
432 207 PA32
208 P4,32
209 F432
210 F4,32
211 1432
212 P4532
213 P4,32
214 14,32
43m 215 P43m
216 F43m
217 143m
218 P43n
219 F43c
220 143d
m3m 21 Pm3m
222 Pn3n
223 Pm3n
224 | Pn3m
225 Fm3m
226 | Fm3c
227 Fd3m
228 | Fd3c
229 Im3m
230 la3d




I.3. Space group symmetry: The International Tables for Crystallography

@ mmm Orthorhombic
Example: Pnma

No. 62 n 21/m 2 /(1 Patterson symmetry Pmmm

hon symmorphic SG

A 3 different settings _
(permutations of a, b, ¢) S
—_— —._‘_._ — l

8 equivalent L )

atomic positions
Do &

__J/
I

| |
O0—@—0—'@
l

l |

l [
TR .
! !

| |
I

i !

S P -
i

s o —L s

[

: - 5
8 symmetry operations  S— -
_ N . ok 10
FO ot
........ 9‘ o o o
- o o & O+ 0O O

contains all the information

First page afPZma Origin at T on 12, necessary for the complete
SRS GO VA agmmetric wnit  0<x<i; 0<y<t; 0<:<] description of the crystal structure
from the International Symmetry operations
Tables for Crystallograph 2) 2(0,0,8) 4.0, 3) 2(0,4.0) 0,,0 @) 2(1,0,0) x.i.4
y g p y g; } 0,0,0 26; a( x,y,)} ‘ %7; m x,},z Y (8) n(0,4,H) t,y,z




I.3. Space group symmetry: The International Tables for Crystallography

Bravais lattice screw axis 2 || @ screw axis 2y || €
glide plane n 1 @ glide plane a 1L ¢

screw axis 2 || b
mirror plane m L b

Symmetry operations

(11 (2)(2(0,0,4)1 £,0,z (3) 2(0,%4,0) 0,y,0 4) 2(4.0,0) x,i.4
(5) 1 0,0,0 (6)/a—x;y,4 () m x,},z (8) (0,4, 1) %,y.z

rotation of order 2

. glide plane n
followed by t = %E

withf=15+17  Planell(8.¢)

_1
Cl'l’X—4

axis || ¢ at
X:% and y =0




I.3. Space group symmetry: The International Tables for Crystallography

Arbitrary choice of
generators

Identity
Lattice translations
+ Others
(axes and/or planes)

Second page of Pnma
space group taken

from the International
Tables for Crystallography

CONTINUED No. 62 Pnma
Generators selected @ 1(1,0,0); ¢(0,1,0); 1(0,0,1); @
Positions ) l
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry
General:
8 d 1 (1)x,y,z (2) x+%,7,z+% 3) x,y+1,7 (4) x+4,5+4,7+4 Okl: k+1=2n
(5) £,y,Z (6) x+4%,y,7+4 (7) x,7+4,z (8) x+4,y+1,z+14 ZkO: Z=2n
00: h=2n
0k0O: k=2n
00l:1=2n
Special: as above, plus
4 ¢ .m. x,t,z X+i,1,z+4 x,4,Z7 x+4,4,7+1} no extra conditions
4 b 1 0,0,4 4,00 0,41 44,0 hkl : h+1,k=2n
4 a 1 0,00 10,4 0,4,0 4,44 hkl : h+1.,k=2n
Symmetry of special projections
Along [001] p2gm Along [100] c¢2mm Along [010] p2gg
a'=1ia b'=»b a'=b b'=c a'=c b'=a
Origin at 0,0,z Origin at x,%,% Origin at 0,y,0
Maximal non-isomorphic subgroups
I [2]1P2,2,2, 1;2:;3;4 See PC(r‘T II
[2IP112,/a(P2,/c) 1:2;5;6
[21P12/m1(P2,/m) 1,3,5;7
[2]1P2)/n11(P2,/c) 1;4;5;8
[21Pnm2,(Pmn?2,) 1;2;7;8
[2]1Pn2,a(Pna?2,) 1;3;6;8 )
LiP2ma Finea)  LAGLT <1— subgroups /supergroups
IIa none 9 p p 9 p
IIb none

see also www.cryst.ehu.es

Maximal isomorphic subgroups of lowest index
IIe ([3]Pnma(a’=3a);[3]Pnma(b’'=3b);[3]1Pnma(c’'=3c)

Minimal non-isomorphic supergroups ¢
I none

II [2IAmma(Cmcem);[2]Bbmm(Cmcm);[2]Ccmb(Cmca);[2]Imma;(2]Pnmm(2a’= a)(Pmmn);
[2]IPcma(2b’'= b)(Pbam);[2]Pbma(2c’= c)(Pbcm)




I.3. Space group symmetry: The International Tables for Crystallography

Wyckoff sites: List of the different sites from the most general (/.e. less symmetrical)
to the less general (/.e. most symmetrical: special position)

Positions

Multiplicity, Coordinates
Wyckoff letter,

Site symmetry

8 d 1 (2) x+4%,¥,z2+4% (4) x+4,y+4,7+4
(6) x+4,y,7+1% (8) x+4,y+4,z+4
4 .m . x,4,2 X+4,4,z+14 x,1,27 x+4,4,7+4
site name \4 b 004 400 044 4.4.0

0,0,0 4,0, 0,4,0 4,14

/\\ RS -

Multiplicity  Wyckoff Site : : "
of the site letter symmetry Coordinates of all equivalent positions




I.3. Space group symmetry: The International Tables for Crystallography

Example: LaMnO; (space group Pnma)

X ) 4 Z
La 0.518 0.25 0.007 > 4c
Mn 0 0] 0 > 4q
o, -0.005 0.25 0.075 > 4¢
0, 0.288 0.096 0.226 > 8d
Positions
Multiplicity, Coordinates
Wyckoff letter,
Site symmetry
0O, @ 1 (1) x,y,z (2 £+4,5,z2+4  (3) X,y+4,7
- 2) X,¥,2 (6) x+4,y,Z7+4 (7) x,§+1,2
La, O, m. xhz ®thbztl B4z x+db7+d
4 b 1 0,0,% $,0,0 0,14 1,1,0
Mn i 0,00 40,4 04,0 4,44

- Bravais lattice = primitive orthorhombic

7 coordinates to determine
for (4+4+12)x3 = 60 in total!

(4) x+4,5+4,7+4
(8) x+4,y+4,z+4




I.3. Space group symmetry: The International Tables for Crystallography

r

& IC5D for WWW - Mozilla Firefox

—

||:|||E|ﬂh-‘

&2 15D for WWW : Details - Mozilla Firefox

icsd.ill.euficsd/details.i hptid[]=4

Fichier Editioﬂ Affichage Historique Marque-pages Outils 2
J 5 ICSD for WWW |T|“‘
‘% I sd.ill.eu/icsd/inc Yaction=Search8page=18:inb_rows=108crde

1996 Hauback, B.C.; Fiellvag, H.; Sakai, N.;

Page : [1](8 results) 10 = results per page.

http://icsd.ill.eu/icsd/index.php

Effect of nonstoichiol
Magnetic order studi

ICSD for WWW

| Print | 1 entry selected.

CC=Collection Code: [AB2X¥4]=ANX Form: [cF56]=Pearson: [e d a]l=Wyckoff Symbol:
[Al2MgO4]=Structure Type:

==*Click the ANX, Pearson or Wyckoff Symbol to find structures with that

sy mbol***,

CC=158694 Help CIF - | Export || Bonds || Pattern || Structure || Jmaol |

Rapid synthesis of room temperature ferromagnetic Ag-doped La Mn O3

e perovskite phases by the solution combustion method. E
Authors Bellakki, M.B.;Shivakumara, C.;Vasanthacharya, N.Y.;Prakash, A.5.
Rt iasice Materials Research Bulletin (2010) 45, 1685-1691

Link XRef SCOPUS SCIRUS Google

Lal Mnl O3 - Lanthanum trioxomanganate [ABX3] [oP20] [d c2 b]
Compound [GdFe03]
cell 5.477(8), 5.524(4), 7.805(6), 20., 90., 90.

PBNM (62) V=236.14

R=0.045000 : RVP XDP TYP =GdFe03 : TEM =293 .
Remarks

At least one temperature factor missing in the paper.

Atom (site} Oxid. ¥, ¥, Z, B, Occupancy

Lal (4c) 3 0.005(12) 0.0120(5) 025 B |
Mnl (4b) 3 0.5 0. 0. 2 R |
o1 (4c) -2 0.0109(7) 0.4869(6) 0.25 B |
02 (8d) -2 0.7500(8) 0.2803(6) 0.06875(3) 2 R |




- part II -

DIFFRACTION
CRYSTALLOGRAPHY IN RECIPROCAL SPACE

An incident beam of X-rays or neutrons can be considered as a plane wave.

For an incident beam to be diffracted by a crystal, its wavelength must be of the
same order of magnitude than the inter-atomic distances (a few angstroms).

g

Medecine (X-ray): 0.2 A< 1<05 A
Crystallography (X-ray & neutrons): 0.5 A< 1< 10 A

— visible light cannot be scattered by a single crystal (4000 A < & < 8000 A)

ZnS

crystal
First X-ray experiment: _E_%
Laue experiment (1912) A <<

min max

2

;

4

7

/_




IT.1. The reciprocal space: Definition

The

which are the extremities of vectors:

is defined as a network of points in the
f=hd+kb+/c

with 6*, 5*, and ¢ the unit vectors of the reciprocal lattice, and A, &, /integers.

(&Q-space)

L% bac
a =C

vV
**:CC/\G

vV
_* drb
c =C

vV

where Cis a constant

and V is the volume of the unit cell

in the direct space:

V=(@G,b,c)=(@Ab).c=d.(bAc)

In solid state physics, €= 2n
In crystallography, €=1

for C=1
\ :
a
b

0|

*
O

*

ol

ol

0|

b .b=¢ .¢=1
g .c=0
b .é=0
& .b=0




IT.1. The reciprocal space: Examples

e Orthorhombic (a# b+ ¢, a= = y= 90°)

x S |
d ||ld and a == ~
| a bt
-%x - * 1 .
b b and b =7 direct
b cell N
x * 1 ~( @ o a
¢ [|€ and ¢ =- c@®
C

e Hexagonal (a= b= ¢, a= f=90°, y=120°)

ClJ_b 7/*2600
1l a

b

¢ I a = 'B* =90° direct

o bc sina cell
V a\/_

p* _ac sinf _ 2

V a3
~_absiny _1 (V abcsiny = ——
_ _ 2 y = a c
¢ V c 2




IT.1. The reciprocal space: First Brillouin zone

(BZ) = the smallest polyhedron enclosed by the perpendicular
bisectors of the nearest neighbors to a given point of the reciprocal space.

: Points of high symmetry

Symbole Description
center of Brillouin zone
middle of an egde between 2 hexagonal faces
center of an hexagonal face
middle of an edge between

a square face and an hexagonal one
center of a square face

corner First Brillouin zone of a F cubic lattice

é)( (G W i |




IT.1. The reciprocal space: Properties

. (DS) used to describe the in the crystal (lengths in A)
Reciprocal space (RS) used to describe the positions of the diffracted peaks, phonons,
magnons, ... (lengths in A1)

e Each familz of rows [A4/1* in RS is L to the family of in the DR:
Angr !/ iy and 7). ) =1
each family of net planes (uvw)* in RS is L to the family of in DS:
a’ww// ., and a’ww oy =1
e The reciprocal cell of a direct cell is primitive,
The reciprocal cell of a direct cell is non primitive.
Examples:  cubic P » cubic P
cubic I » cubic F
cubic F » cubic I




IT.1. The reciprocal space: Properties

e The d-spacing a,, for the net planes (Ak/) is equal to the inverse of the length of the
reciprocal lattice vector ﬁh*k/ —f=hd+kb+/¢

_1 _ 1
dm_\f\ B \/(ha*+k6*+/6*).(ha*+k5*+/6*)

Examples:  Orthorhombic cell: dhk/:\/ — 21 AT 12 =
K a2+ k26 2.2 ¢ \//12+k2+/2
a~ b° ¢
Cubic cell: dhk/:\/hz 22 2
+ kS +
1
: d,,. =
Hexagonal cell ki \//72 a 2+ k?b 21/2C % 12hkcosb0° a @
1

\/332(/72+k2+h k)+;




II.2. Diffraction: Diffraction condition

a- Bragq's law

The beams scattered by any lattice nodes must be in phase in order to get constructive
interferences - difference in path 6 has to be a multiple of the wavelength 4

VM N Ss=MM-NN=n1 (ninteger)
— V ri r(cosé,-cosé)=ni

plane 1 Descartes' law, as for optics:

— =06 | (n=0)

Diffraction by a 2D lattice of nodes < reflection on the net plane containing the nodes




II.2. Diffraction: Diffraction condition

B
® = €5
, P D\g (k) planes 5.::GF;G—I—;;7K. (n w;:reger)
%\ o I 6 )}\ wit = = sing. hk/

X plane 1 ﬂ
/v >

X G H Plane 2 NnA= 2 dhk/ sing@
Dhid Bragg's law

v plane 3

A family of (A4/) net planes of the crystal diffracts with different orders 7
only for discrete angle values given by the Bragg's law — Bragg peaks Ak/

ni<2d,,, = A musn't be too large

, N\ d, )

NA =2dy. sing A=2d) . sin@ with d, ... :%
for a Plattice: | = h'=nh, k'=nk, I'=nl

\/7: k, /= coprime integers ) \_h. k., 'are now any integers y




II.2. Diffraction: Diffraction condition

G = incident wave vector . o1
© k9 scattering vector @ =k - =\k|=—
k = diffracted wave vector 2 % ‘ko‘ ‘ ‘ A
: 1
By construction (Descartes law and k:koz/i ):
we see that | Q|| ‘77/7/(/ and Q@ = 2 s;n@

Q

(4kl) plane 1o Bragg's law n\=2d,,, sing

: n
can thus be rewritten: |&Q@=—
dhk/

= the diffraction condition can be reformulated as follows:

The scattering vector must be a vector of the reciprocal lattice
Its extremity must be a point from a row [AA/1* passing through the origin of the RS
1 to the family of (Ak/) net planes in DS: @ = n(h5*+k5 *+/5*) —h'd +k'b +/'E




II.2. Diffraction: Diffraction condition

b- Ewald's construction

This construction allows to predict all directions of diffraction, which,
for a given wavelength, only depend on the lattice parameters of the studied crystal.

Let us consider a monochromatic incident beam
of X-rays or neutrons

Diffraction occurs if @ is a
vector of the reciprocal lattice

i

Diffraction occurs each time
a lattice node intersects the Ewald sphere




IT.2. Diffraction by an atom: Scattered amplitude

a- X-rays

Photons scattered by the electronic cloud of atoms: electronic interaction
Size of electronic cloud ~ a few A =~ 1 (X-rays)
— destructive interferences (more and more as @ increases)

- o 5 Scattered amplitude for X-rays
(Q)= J p(F) €™ Q7 dV | | = Fourier transform of the electronic density
V = atomic scattering factor or atomic form factor
- |5 18
e/A : . .
Electronic density Atomic form factor
304 f
20- F.T.
6 |
10- >
4 |
3 |
2
1
° rd) o Q (A1)




IT.2. Diffraction by an atom: Scattered amp/itude

b- Neutrons Neutrons scattered by the nucleus of atoms: nuclear interaction
Size of nucleus << A (neutrons) — nuclear density o (r) =6 (r)

Dirac function §(r) in r-space= constant in Q-space

b(R)=b-=Cst

c- Comparison X-rays / Neutrons

Scattered amplitude for neutrons

= scattering length or Fermi length

Neutrons are also
scattered by unpaired

= Fourier transform of the nuclear density electrons (spins)-

magnetic interaction

1

X-rays: e N when 67
o fucZ
Neutrons: e H(0) = Cte

e bvaries erratically with Zand A4
(chemical nature and isotope)

2 1 1, frx(Q=0) = 0.282 2 102 cm

Scattering Length (107'2cm)

! l ' 1
40 60 80 100
Atomic Number




IT.2. Diffraction by a crystal: Structure factor

N 7Q.r; -W,; | | Scattered amplitude by a unit cell
= : J J
F(Q) 2 d; e € = Fourier transform of the atomic density of the cell
= structure factor

/ . ) g Sin°6  Debye-Waller factor
kb + /¢ and e Y =e ' 4 inwhich B = <uP reflects the

J
with {Q = ha +
P = amplitude of thermal vibration

N | 2i7z(/7XJ.+kyJ.+/zJ-) —l/l/J.2
>. a;e e

J(Q-7)

N,

d Structure factor F(Q) d Dirac function h
related to the motif related to the direct lattice
(nature and positions of the atoms) (periodicity of the structure)
— governs the amplitudes of diffraction — governs the directions of diffraction
_—9 P N =9 Y,

We find again the two concepts that characterize a crystal

Diffracted intensity I (Q) -«




IT.2. Diffraction by a crystal: Structure factor

The phase problem

In the most general case, the structure factor is a complex number
and can be written as follows: £ () = ‘,’-‘ (Q*)‘ et

The structure factor is the quantity which we are interested in:
it contains the atomic positions x;, y;, z;

We measure: I(Q)ZF*(@)-F(@):F(Q)Z

= we do not access to the scattered amplitude but only to the intensity:
the information concerning the phase is lost.




IT.2. Diffraction: Symmetry and Extinction rules

Effect in the RS of a symmetry operation from the DS:

e Symmetry of the reciprocal space given by the Laue class (inversion always there) * *

e Systematic extinctions given by the space group

— they lead to a systematic absence of intensity of Bragg reflections concerned by
this extinction rule, and this, independently from the atomic positions in the cell.

4 N

Lattice type (if not P) Symmetry operations
— "artificial” extinction (due to the containing a glide translation™
fact that a centered cell was chosen) = non symmorphic operations

e Particular extinctions given by the motif *
they concern atoms™ occupying some special Wyckoff sites

— the atoms occupying such special positions give a null contribution to the intensity
of Bragg reflections concerned by this extinction rule.

* provided the nucleus (neutrons) or electronic cloud (X-rays) of the atoms is spherical
* provided the Fermi length (neutrons) or atomic form factor (X-rays) is real




IT.2. Diffraction: Symmetry and Extinction rules

Example of a glide plane a 1 [001]at z=1/4

— Reflection trough a plane L [001] with the glide translation d

— equivalent positions: (XJ- Y zj) and (XJ'Jfé Y, zJ-+;)

2i7r(/7xj+ kyj+ Iz

N
The structure factor F(hk/) = > a;e J) can thus be split in two parts:

=

N F(/?/(/) _ NZ/Z a, {QZin(hxj+ Ky i+ /zj) .\ eZi?Z'|:/7(XJ-+;-)+ Ky i+ /(ézjﬂ}
j=1

— F(Ak/) cannot be completely factorized except for /=0

NI2  2ia(hx;+ k) ——
, JT Extinction
) a; e T

_ [F(Ak0)=0 if h=2n+1
F(hkO)=0 if h=2n

— F(/?kO) = [1+ei” h}

t Reflection condition




IT.2. Diffraction: Symmetry and Extinction rules

Systematic extinctions due to the lattice type

Primitive lattice: no extinction
Centered lattice: direct cell m times too large — reciprocal cell m times too small
— systematic absence of intensity on some Ak/spots

Ex. I lattice — additional lattice translation %(5 + b +E) in DS —» 2(5* +b +E*) in RS

— reflection condition for Ak/: h+ k+/=2n

Systematic extinctions due to non symmorphic symmetry operations

Ex. plane al ¢ — extinction concerning Bragg peaks A0 (plane 1& through O*)
& glide translation f =14 inDS — 7 =24 inRS

— reflection condition for hk0: A =2n
Ex.axis 2,//6 — extinction concerning Bragg peaks 04O (row//b * through O*)
& glide translation f =15 inDS —  =2b" inRS

— reflection condition for OAO: Ak =2n




IT.2. Diffraction: Symmetry and Extinction rules

Example:  Space group Cc (glide plane ¢ L 5 )

* Symmefry: inversion axis 2||6
_ — — 0
Laue class: 2/m - same intensity for: Akl hkl/, hkl/, and  hk/

— _ v .
mirror mLb 2 previous Bragg peaks x 1

e Reflection conditions :
C-centering - reflection condition: hkl with h+k=2n

c glide plane - reflection condition: h0/ with /=2n




IT.2. Diffraction: Symmetry and Extinction rules

The International Tables for Crystallography

« Example: Pnma

Multiplicity, Coordinates

Reflection conditions

Wyckoff letter,

Site symmetry

8 d 1 ()x,y,z  (2) x+4,5,z+4 (3) x,y+4,7 (4 x+i,y+i,7+4 T
(3) £.9.2 (6) x+4,¥,2+1 (7) x.§+4.2 (8) x+4,y+4,z+
Special:
4 ¢ .m. x,id,z X+, t,z+%F X,1,7 x+4,1,7+4
4 b 1 0,0,4 4,0,0 0,4,4 4,40
4 a 1 0,00 10,4 0,4,0 44,4

Reflection conditions

General

as above, plus

no extra conditions
hkl : h+1 k=2n
hkl : h+l k=2n

glide plane »n L a-axis
glide plane a L c-axis
diad axis 2,// a-axis
diad axis 2,// b-axis
diad axis 2, // c-axis

If the reflection condition is not fulfilled, the diffracted intensity is null

Special

The contribution to the diffracted intensity of atoms located on special positions

is null if the condition is not fulfilled




IT.3. Experiments: How to solve a crystallographic structure

© Symmetry of the diffraction pattern — Laue class

@ Positions of Bragg reflections — Lattice parameters

Direction of the diffracted beams (20) = Better precision at large angle
A=2d,,,sin8 = long wavelength and/or large Miller indices (small dj,,)

© Extinction rules — Possible space group(s)

O Intensities of the Bragg peaks — Structure determination

There are as many F(hkl) as measured hkl Bragg peaks (h, k, | any integers)
= measure up to large Q

A=2d,,,sin0 = Q s% = short wavelength (in particular for large unit cells)

A Phase problem: Patterson function, direct methods, ...




IT.3. Experiments: How to solve a crystallographic structure

O Symmetry of the diffraction pattern — Laue class — Laue diffraction

@ Positions of Bragg reflections — Lattice parameters

— Powder or single-crystal diffraction

© Extinction rules — Possible space group(s)  — single-crystal diffraction

O 1Intensities of the Bragg peaks — Structure determination

— Laue, powder or single-crystal diffraction

A Phase problem: Patterson function, direct methods, ...




IT.3. Experiments: Technigue 1 - powder diffraction




IT.3. Experiments: Technigue 1 - powder diffraction

T =|| —_— L —

i e - -
==
- G-
2 J " i nik Y
i Ty ~ | p—

X-ray powder diffractometer
@ SLS
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IT.3. Experiments: Technigue 1 - powder diffraction

pb=od  FREF.
L] o Yobs
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Yob=-YTcalc
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IT.3. Experiments: Technigue 2 - single-crystal Laue diffraction




IT.3. Experiments: Technigue 2 - single-crystal Laue diffraction

— diffraction pattern = Laue diagram
evidencing the symmetry planes and axes
in reciprocal space

B — Determine the Laue class, align a crystal, ...

Laue pattern showing the symmetries




IT.3. Experiments: Technigue 2 - single-crystal Laue diffraction

Vitamin B12 measured on Vivaldi (Laue diffractometer)
Nearly 10000 measurable Bragg reflections
8-hour exposure, 10mm3 crystal

< ik TR B
BN (S A

T

VIVALDI @ ILL | | Wagne/:, Luger, Mason, McIntyre (2002) - ILL

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier



IT.3. Experiments: Technigue 3 - single-crystal diffraction

four circle / normal beam




IT.3. Ex pemmen'rs Technigue 3 - single-crystal diffraction (4-C/rc/e)

« kappa »
geometry

X—ray 4-circle @ CEA

max. size ~ 150 um

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier



IT.3. Experiments: Technigue 3 - single-crystal diffraction (4-circle)

Chiral Heptanuclear Europium Wheels Bozoklu et al. (2010) - ESRF
Space group €2, a= 45.7446 A, b= 310966 A, c= 457325 A, 5= 92.945°, Z= 8




IT.3. Experiments: Technigue 3 - single-crystal diffraction (normal beam)

| \ it [ BaCo,V,04 (body-centered tetragonal)

H=0:
Antiferromagnetic ordering

k =(1,0,0)

H>4 T
Incommensurate\magnetic structure

k =(1,0,6)

4000
3000 —:

2000

1000

Neutron conts / 1 min.

[ I o [ I T |
-03 -02 -01 0.0 0.1 0.2 0.3 0.4

. e e Q (rlu)

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier 64




IT.3. Experiments: Technigue 4 - single-crystal diffraction (normal beam)

Calculated Intensity (arb. units)

250 -

200

150

100

[6)]
o
|

H=42T
magnetic
reflections

R.= 8.0%
R, = 15.6%

I | 1
50 100 150

|
200 250

Observed Intensity (arb. units)

Collect of magnetic Bragg peaks (rocking curves)

Refinement of the magnetic structure using e.g. Fullprof

— - = = — — = S = ~ - —
bA |
— | — ¢— — | — — — | — k —
1" 86 7 &
— | — — — — [ — — — — |~ D —
— | = - — = 2 — | b —
5 2 d 8
1 1
PR - - N - f PR -. -
a® >0 |
— S = =" 5~ — > . il
1 © 7" 4

1

1
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Thank youl

Any guestions?

Questions
are
guaranteed in
life;
Answers
aren't.

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées

Béatrice Grenier
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