

Ecole du GDR MICO

(Matériaux et Interactions en COmpétition)

Mai 2014

Cristallographie et techniques expérimentales associées

Béatrice GRENIER

UJF & CEA, INAC/SPSMS/MDN Grenoble, France

<u>grenier@ill.fr</u>

Introduction: Crystallography

Crystallography = science of crystals

External shape + internal structure + growth + physical properties of crystals

Crystallography = study the matter which is crystallized

 \rightarrow determine the positions of the atoms inside \rightarrow X-ray or neutron (or electronic) diffraction techniques

Each grain of a polycrystal is thus a single crystal

Introduction: *The two types of symmetries in crystals*

Symmetry group: set of symmetry operations that leave the atomic positions unchanged

1 - Translation symmetry

Periodicity of the physical properties of crystals: solid state physics

- Phonons, magnons, ...
- Diffraction

2- Orientation symmetry: point symmetry

Anisotropy of the physical properties of crystals: macroscopic physics

 \rightarrow reflects the point symmetry of the crystal.

- External shape of crystals (natural faces)
- Electric conductivity, optics, mechanical and magnetic properties, ...

To describe the crystals: geometry, symmetry, atomic coordinates, ... direct space To determine the crystal structure: diffraction reciprocal space

Outline

part I: CRYSTALLOGRAPHY IN DIRECT SPACE

I.1. Orientation symmetry

Elementary point symmetries How to obtain and name all crystallographic point groups? Examples of point groups The 32 point groups and 11 Laue classes

I.2. Translation symmetry

Lattice and motif, Unit cell The orientation symmetries of lattices: the 6 conventional cells, 7 crystal systems and 14 Bravais lattices Rows and net planes

I.3. Space group symmetry

Glide planes and screw axes The 230 space groups The International Tables for Crystallography

I.4. Beyond basic crystallography

Aperiodic crystals: superspace groups Magnetic structures: magnetic point groups and space groups

Outline

part II: DIFFRACTION - CRYSTALLOGRAPHY IN RECIPROCAL SPACE

II.1. The reciprocal space

Definition Examples First Brillouin zone Properties

II.2. X-ray and neutron diffraction by a crystal

Diffraction condition Diffraction by an atom: scattered amplitude Diffraction by a crystal: structure factor Symmetry and extinction rules Beyond basic crystallography: aperiodic crystals and magnetic structures

II.4. Experiments

How to solve a structure Technique 1: powder diffraction Technique 2: single-crystal Laue diffraction Technique 3: single-crystal (four circle / normal beam) diffraction

4

Voir

fichier

Compléments

I.1. Orientation Symmetry: Elementary point symmetries

At microscopic (to within a translation in some cases) & macroscopic scale: I orientation symmetries called point symmetries.

These operations are isometries that leave at least one point fixed.

I.1. Orientation Symmetry: Elementary point symmetries

Rotations compatible with the translation symmetry = those of orders 1, 2, 3, 4, 6

I.1. Orientation Symmetry: How to obtain and name all point groups ?

Group structure Operation: × (apply successively 2 sym. op.); Closure; associativity; Neutral element: 1 (do nothing); Inverse: $n \rightarrow -n$ (rotate in the other way)

How to obtain all various crystallographic point groups (= crystal classes) ? Combine these 10 elementary symmetry operations, with the following constraints:

- all symmetry elements go through a common point,
- point group compatible with translation symmetry
 - \rightarrow constraints between the orientations of the various symmetry operations

Examples:

4/m

 $\frac{4}{m}\frac{2}{m}\frac{2}{m} \rightarrow 4/mmm$

Notation of the point groups: <u>1- International (Hermann-Mauguin) symbols</u> Symmetry elements along 1, 2 or 3 non equivalent directions (primary, secondary, tertiary), ordered with decreasing or equal degree of symmetry *(except for 2 cubic point groups)*

The direction of a rotation is given by its axis The direction of a mirror is given by its normal 'n/m' = axis n and mirror along the same direction (*i.e.* mirror plane \perp to axis n)

 \rightarrow used for crystallography

I.1. Orientation Symmetry: How to obtain and name all point groups?

Notation of the point groups: <u>2-</u>Schoenflies symbols

C_n D_n	Cyclic Dihedral, or two-sided	<i>n</i> -fold rotation axis ($n = 1, 2, 3, 4, 6$) <i>n</i> -fold rotation axis plus <i>n</i> twofold axes \perp to that axis								
	subscript h : addition of a mirror plane \perp to the <i>n</i> -fold axis (C_{nh} , D_{nh} , subscript v : addition of a mirror plane // to the <i>n</i> -fold axis (C_{nv} , D_{nv} , subscript d : addition of a mirror plane // to the <i>n</i> -fold axis and bis the angle between the axes 2 \perp to the <i>n</i> -fold axis (D_{nv})									
S _{2n}	Spiegel = Mirror	2 <i>n</i> -fold rotoinversion axis (2 <i>n</i> = 2, 4, 6)								
Τ	Tetrahedral	symmetry of a tetrahedron with (T_d) or without (T) improper rotations, $T_h = T$ with the addition of an inversion								
0	Octahedral	symmetry of an octahedron (or cube) with (O_h) or without (O) improper operations								
Other I	notations:	$S_2 = C_i$ $S_6 = C_{3i}$ $C_{1h} = C_s$								
\rightarrow used	\rightarrow used for spectroscopy									
Ecole du GD	R MICO Grenoble mai 2014 - Cris	tallographie et techniques expérimentales associées - Béatrice Grenier								

I.1. Orientation Symmetry: Examples of point groups

Examples: point groups of molecules

I.1. Orientation Symmetry: The 32 point groups and 11 Laue classes

Order of	the point symmetry	along the:	
primary direct°	secondary direct°	tertiary direct°	Point groups and Laue groups
-	-	-	
2	-	-	2, m, 2/m
2	2	2	222, 2mm, $\frac{2}{m}\frac{2}{m}\frac{2}{m}m$ (mmm)
3	-	-	3,3
3	2	_	$32, 3m, (\overline{3}\frac{2}{m})$
4	_	_	$4,\overline{4},\overline{4/m}$
4	2	2	422, 4mm, $\overline{4}2m$, $(\frac{4}{m}\frac{2}{m}\frac{2}{m})$ (4/mmm)
6	-	-	$6, \overline{6}, \overline{6/m}$
6	2	2	622, 6mm, $\overline{62m}, (\frac{6}{m}, \frac{2}{m}, \frac{2}{m})$ (6/mmm)
2	3	-	$23, \frac{2}{m}\overline{3}(m\overline{3})$
4	3	2	432, $\overline{4}3m$, $\frac{4}{m}\overline{3}\frac{2}{m}(m\overline{3}m)$
Ecole du GDR MICO, Gre	enoble, mai 2014 - Cristall	ographie et techniques expo	érimentales associées - Béatrice Grenier 10

Cristallographie et techniques expérimentales associées Ecole du GDR MICO, Grenoble, mai 2014 --Béatrice Grenier

I.1. Orientation Symmetry: The 32 point groups and 11 Laue classes

able 10.1.2.4. fro r Crystallograph	rernational vs Schoenflies symbols ole 10.1.2.4. from the International Tables Crystallography, Volume A)				$\begin{array}{c} 3\\ \overline{3}\\ 32 \end{array}$	$\begin{vmatrix} 3\\ \overline{3}\\ 32 \end{vmatrix}$	$ \begin{array}{c} C_3\\ C_{3i}(S_6)\\ D_3 \end{array} $			
	Point group	symbol						3 <i>m</i>	3m	C_{3v}
System used in this volume	Short	Full	Schoenflies symbol		$\overline{3}m$	$\overline{3}\frac{2}{m}$	D_{3d}			
Triclinic	$\frac{1}{1}$	$\frac{1}{1}$	$egin{array}{c} C_1 \ C_i(S_2) \end{array}$	Hexagonal	6	6	<i>C</i> ₆			
Monoclinic	2 m 2/m	$ \begin{array}{c} 2\\ m\\ \frac{2}{m} \end{array} $	C_2 $C_s(C_{1h})$ C_{2h}		6 6/m 622	$\frac{\overline{6}}{\overline{m}}$ 622	C_{3h} C_{6h} D_6			
Orthorhombic	222 mm2 mmm	222 $mm2$ $\frac{2}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m}$	$egin{aligned} D_2(V) \ C_{2 u} \ D_{2h}(V_h) \end{aligned}$		6mm 62m 6/mmm	$\frac{6mm}{62m}$ $\frac{6}{m}\frac{2}{m}\frac{2}{m}$	C_{6v} D_{3h} D_{6h}			
Tetragonal	$ \begin{array}{c} 4\\ \overline{4}\\ 4/m\\ 422 \end{array} $	$ \begin{array}{c} 4\\ \overline{4}\\ \frac{4}{m}\\ 422 \end{array} $	$egin{array}{ccc} C_4 & & & & & & & & & & & & & & & & & & &$	Cubic	Cubic 23 $m\overline{3}$ 432		23 $\frac{2}{m}\overline{3}$ 432	T T_h O		
	4mm 42m 4/mmm	$\frac{4mm}{42m}$ $\frac{4}{m}\frac{2}{m}\frac{2}{m}\frac{2}{m}$	$egin{aligned} & C_{4v} \ & D_{2d}(V_d) \ & D_{4h} \end{aligned}$		$\overline{4}3m$ $m\overline{3}m$	$\overline{4}3m$ $\frac{4}{m}\overline{3}\frac{2}{m}$	T_d O_h			

I.2. Translation Symmetry: Lattice and motif

At the atomic scale, \exists translation vectors $\vec{\mathcal{T}}$ that put the crystallographic structure in coincidence with itself.

$$\vec{\mathcal{T}} = u \, \vec{a} + v \, \vec{b} + w \, \vec{c}$$
 with u, v, w integers

 \vec{a} , \vec{b} and \vec{c} are called the basis vectors and the volume they define is called the unit cell

Crystal = Lattice + Motif

The set of extremities of the T vectors define an abstract network of points (= nodes): the lattice. At each lattice node, one associates a group of atoms: the motif.

12

The knowledge of the lattice (basis vectors $\vec{a}, \vec{b}, \vec{c}$) and of the motif (nature and positions x, y, z of the atoms in the cell) completely characterizes the crystalline structure.

I.2. Translation Symmetry: Unit cell

The unit cell allows to pave the space with no empty space nor overlap, by applying the lattice translations.

Examples at 2D:

Rotation of order 4: Compatible with the translation symmetry

Rotation of order 5: not compatible with translation symmetry \rightarrow quasicrystals

I.2. Translation Symmetry: Unit cell

 Multiplicity *m* of a unit cell = Number of lattice nodes (and thus of motifs) per unit cell How to count the number of lattice nodes per unit cell?
 → each lattice node counts for 1/n, with n the number of unit cells to which it belongs.

• Primitive unit cell: *m* = 1

For a given lattice, all primitive unit cells have the same volume: $V_p = (\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \wedge \vec{b}) \cdot \vec{c}$

• Centered unit cell: *m* = 2, 3, ... (doubly, triply, ... primitive)

Volume: $V_m = m V_p$

These cells are used only when more symmetrical than any primitive cell of the lattice.

I.2. Translation Symmetry: 6 conventional cells and 7 crystal systems

Translation symmetry & Orientation symmetry

The crystals can be classified into 6 conventional cells and 7 crystal systems each of them having a characteristic orientation symmetry.

The 6 conventional cells are, from the lowest to the highest symmetric one:

а	triclinic	<i>a≠ b≠ c</i>	$\alpha \neq \beta \neq \gamma$
m	monoclinic	<i>a≠b≠c</i>	$\alpha = \gamma = 90^\circ, \beta > 90^\circ$
0	orthorhombic	<i>a≠b≠c</i>	$\alpha = \beta = \gamma = 90^{\circ}$
1	tetragonal or quadratic	a = <i>b</i> ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$
h	hexagonal *	a = <i>b</i> ≠ c	α = β = 90°, γ = 120°
С	cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$

* The hexagonal cell splits in two crystal systems: trigonal (axis 3) and hexagonal (axis 6); the others are the same.

15

I.2. Translation Symmetry: Crystal system vs point group

Crystal system	Point groups and Laue classes	primary direction	secondary direction	tertiary direction
monoclinic	1,1	-	-	-
triclinic	2, m, 2/m	Ь	-	-
orthorhombic	222,2 <i>mm</i> , <i>mmm</i>	а	Ь	С
trigonal	$3,\overline{3}$ 32, 3 <i>m</i> , $\overline{3}m$	С	a, b, -a-b	-
Tetragonal or quadratic	4, 4 , <u>4</u> / <i>m</i> 422, 4 <i>mm</i> , 4 2 <i>m</i> , <u>4</u> / <i>mmm</i>	С	a, b	a+b, a-b
hexagonal	6, 6 , 6/ <i>m</i> 622, 6 <i>mm</i> , 6 2 <i>m</i> , 6/ <i>mmm</i>	С	a, b, a+b 	2 <i>a+b</i> ,
cubic	23, <u>m</u> 3 432, 4 3 <i>m</i> , <u>m</u> 3 m	a, b, c	a+b+c,	a+b,

I.2. Translation Symmetry: The 14 Bravais lattices

Classification in 14 Bravais lattices (Bravais, 1848):

- 6 primitive lattices, built from the 6 conventional cells,
- 8 non primitive (centered) lattices, by adding some nodes in the former cells, provided no symmetry element is lost and there exists no primitive cell having the same symmetry.

Symbol	lattice type	multiplicity
Ρ	primitive	1
Ι	body centered	2
F	all-face centered	4
А, В, С	one-face centered: (b,c),(ā,c),(ā,b) respectively	2
R	rhombohedrally centered: additional nodes at 1/3 and 2/3 of the diagonal of the hexagonal cell (trigonal system)	3

NB: the primitive cell of the hR cell is a rhombohedral cell (a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}).

17

I.2. Translation Symmetry: The 14 Bravais lattices

NB: for centered lattices, ∃ additional lattice translations

Example: I lattice

$$\begin{cases} \vec{\mathcal{T}} = u \ \vec{a} + v \ \vec{b} + w \ \vec{c} \\ \vec{\mathcal{T}}' = \vec{\mathcal{T}} + \frac{1}{2} (\vec{a} + \vec{b} + \vec{c}) \end{cases}$$

with u, v, w integers

I.2. Translation symmetry: Rows and net planes

• Family of [uvw] rows

One can group all lattice nodes into parallel equidistant rows noted [*uvw*] along $\vec{n}_{uvw} = u\vec{a} + v\vec{b} + w\vec{c}$

n_{uvw}: row parameter

u, *v*, *w*: coprime integers indices of the row

• Family of (*hkl*) net planes

One can group all lattice nodes into parallel equidistant net planes noted (*hk*/) spaced by d_{hkl} , such as hx + ky + lz = m

d_{hkl}: d-spacing h, k, l: coprime integers for a Plattice Miller indices

Cristallographie et techniques expérimentales associées Ecole du GDR MICO, Grenoble, mai 2014 **Béatrice** Grenier • <u>Glide planes</u>

Combination of a reflection (through a plane) and a fractional translation $\vec{t} \parallel$ plane

<u>Example</u>: glide plane $c \perp \vec{a}$

when applying twice the glide plane operation, one must recover a translation vector of the lattice:

$$\overrightarrow{PP_2} = 2\vec{t} = p\vec{c}$$
 with $p < 2 \Rightarrow p = 1$

$$\rightarrow \vec{t} = \frac{\vec{c}}{2}$$

I.3. Space group symmetry: *Glide planes*

The various symmetry planes and their symbol

nninted	symmetry	graphica	al symbol	
symbol	plane	normal to projection plane	parallel to projection plane	nature of glide translation
m	reflection plane (mirror)			none
a, b, c	axial glide plane	$\vec{t} \parallel \text{proj. plane}$ $\vec{t} \perp \text{proj. plane}$		a/2, b/2, or c/2 respectively
е	double glide plane	·· — ·· — ··	T	a/2 and b/2, b/2 and c/2 or a/2 and c/2; OR (a±b)/2 and c/2 etc for t and c systems
n	diagonal glide plane (<i>net</i>)			(a+b)/2, (b+c)/2 or (c+a)/2; OR (a+b+c)/2 for t and c systems
d	"diamond" glide plane		$\frac{\frac{1}{8}}{\frac{3}{8}}$	(a±b)/4, (b±c)/4 or (c±a)/4; OR (a±b±c)/4 for t and c systems

<u>Screw axes</u>

Combination of a rotation (around an axis *n*) and a fractional translation $\vec{t} \parallel axis$

<u>Example</u>: screw axis $n_p \parallel \vec{c}$

when applying *n* times the screw axis operation, one must recover a translation vector of the lattice:

$$\overrightarrow{PP_n} = n\vec{t} = p\vec{c}$$
 with $p < n$

$$\rightarrow \vec{t} = \frac{p}{n}\vec{c} \qquad p = 0, 1, ..., n-1$$

I.3. Space group symmetry: Screw axes 4_p

4₂ axis:
$$\vec{t} = \frac{1}{2}\vec{c}$$

 $4_3 \text{ axis: } \vec{t} = \frac{3}{4}\vec{c}$

24

The various rotation and screw axes and their symbol

printed symbol	symmetry axis	graphic symbol	nature of the screw translation	printed symbol	symmetry axis	graphic symbol	nature of the screw translation
1	Identity	none	none	4	Rotation tetrad		none
Ī	Inversion	0	none	41		$\mathbf{\mathbf{A}}$	<i>c</i> /4
	Rotation diad	(L naper)		4 ₂	Screw tetrads	è	2 <i>c</i> /4
2	or twofold rotation axis	(∥ paper)	none	4 ₃			3 <i>c</i> /4
	Screw diad	6	c/2	4	Inverse tetrad	$\mathbf{\Phi}$	none
21	or twofold) (⊥ paper)	07 2	6	Rotation hexad		none
	screw axis	(paper)	<i>a</i> /2 or <i>b</i> /2	61		1	<i>c</i> /6
		⊥ paper		6 ₂		Ň	2 <i>c</i> /6
3	Rotation triad	`	none	6 ₃	Screw hexads	Ó	3 <i>c</i> /6
31	Sonow third		<i>c</i> /3	64		Í	4 <i>c</i> /6
32	Screw Irida		2 <i>c</i> /3	6 ₅			5 <i>c</i> /6
3	Inverse triad		none	6	Inverse hexad		none

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

I.3. Space group symmetry: The 230 space groups

• International (Hermann-Mauguin) symbol of a space group (Ex. P42/mmc)

 $\frac{1^{s^{+}} \text{ letter}}{\text{following letters}}:$ $\frac{1^{s^{+}} \text{ letter}}{\text{following letters}}:$ $\frac{1^{s^{+}} \text{ letter}}{\text{nature of the symmetry elements}}$ P, I, F, A (B or C), R

Space group symmetries: symmetry axes (largest *n*, smallest *p*) and symmetry planes (*m* > *e* > *a* > *b* > *c* > *n* > *d*)

Along the primary, secondary and tertiary directions: 3 non equivalent directions of symmetry of the cell (same as for point groups)

26

Conventional cell	Primary direction	Secondary direction	Tertiary direction						
triclinic	only one symbol which denotes all directions of the crystal								
monoclinic	primary direction only	primary direction only: $b(1^{st} \text{ setting})$ or $c(2^{nd} \text{ setting})$ (order 2)							
orthorhombic	a (order 2)	b (order 2)	<i>c</i> (order 2)						
tetragonal	<i>c</i> (order 4)	and b (order 2)	[110] and [110] (order 2)						
hexagonal	<i>c</i> (order 6 or 3)	<i>a</i> , <i>b</i> and [110] (order 2)	[210],[120] and [110] (order 2)						
cubic	< <u>100></u> (order 4 or 2)	< <u>111></u> (order 3)	< <u>110></u> (order 2)						

I.3. Space group symmetry: The 230 space groups

Cryst.	Point	Space group	Cryst.	Point	Space group	Cryst.	Point	Space group	Cryst.	Point	Space group	Cryst.	Point	Spac	e group
system	group	No symbol	system	group	No system	system	group	No system	system	group	No system	system	group	No	system
													75		
а	1	1 P1		mmm	47 <i>Pmmm</i>			93 <i>P</i> 4 ₂ 22			139 <i>I</i> 4/ <i>mmm</i>			185	P6 ₃ cm
	ī	$2 P\overline{1}$			48 Pnnn			94 <i>P</i> 4 ₂ 2 ₁ 2			140 <i>I</i> 4/ <i>mcm</i>			186	P6 ₃ mc
m	2	3 P2			49 <i>Pccm</i>			95 <i>P</i> 4 ₃ 22			141 $I4_1/amd$		$\overline{6}m2$	187	$P\overline{6}m2$
		4 <i>P</i> 2 ₁			50 Pban			96 <i>P</i> 4 ₃ 2 ₁ 2			142 $I4_1/acd$			188	$P\overline{6}c2$
1		5 C2			51 Pmma			97 <i>I</i> 422	h	3	143 P3			189	$P\overline{6}2m$
	m	6 <i>Pm</i>			52 Pnna			98 <i>I</i> 4 ₁ 22			144 <i>P</i> 3 ₁			190	$P\overline{6}2c$
		7 <i>Pc</i>			53 Pmna		4mm	99 P4mm			145 P3 ₂		6/mmm	191	P6/mmm
		8 <i>Cm</i>			54 Pcca			100 P4bm			146 <i>R</i> 3			192	P6/mcc
		9 Cc			55 Pbam			101 P4 ₂ cm		3	147 $P\overline{3}$			193	P6/mcm
	2/m	10 P2/m			56 Pccn			102 <i>P</i> 4 ₂ <i>nm</i>			148 R3			194	P6/mmc
		11 $P2_1/m$			57 Pbcm			103 P4cc		32	149 P312	с	23	195	P23
	2	12 C2/m			58 Pnnm			104 P4nc			150 P321			196	F23
		13 P2/c			59 Pmmn			105 P4 ₂ mc			151 <i>P</i> 3 ₁ 12			197	<i>I</i> 23
		14 $P2_{1}/c$			60 Pbcn			$106 P4_2bc$			152 P3 ₁ 21			198	P2 ₁ 3
		15 C2/c			61 Pbca			107 <i>I</i> 4 <i>mm</i>			153 P3 ₂ 12			199	<i>I</i> 2 ₁ 3
0	222	16 P222			62 Pnma			108 <i>I</i> 4 <i>cm</i>			154 P3 ₂ 21		<i>m</i> 3	200	$Pm\overline{3}$
		17 P222 ₁			63 <i>Cmcm</i>			190 <i>I</i> 4 ₁ <i>md</i>			155 R32			201	$Pn\overline{3}$
	Î	18 P2 ₁ 2 ₁ 2			64 <i>Cmce</i>			110 $I4_1cd$		3 <i>m</i>	156 P3m1			202	$Fm\overline{3}$
	e.	19 <i>P</i> 2 ₁ 2 ₁ 2 ₁			65 Cmmm		$\overline{4}2m$	111 $P\overline{4}2m$			157 P31m			203	$Fd\overline{3}$
		20 <i>C</i> 222 ₁			66 <i>Cccm</i>			112 $P\overline{4}2c$			158 P3c1			204	$Im \overline{3}$
		21 C222			67 Cmme			113 $P\overline{4}2_1m$			159 P31c			205	$Pa\overline{3}$
		22 F222			68 Ccce			114 $P\overline{4}2_1c$			160 R3m			206	$Ia\overline{3}$
		23 <i>I</i> 222			69 Fmmm			115 $P\overline{4}m2$			161 <i>R</i> 3 <i>c</i>		432	207	P432
		24 <i>I</i> 2 ₁ 2 ₁ 2 ₁			70 <i>Fddd</i>			116 $P\overline{4}c2$		$\overline{3}m$	162 $P\overline{3}1m$			208	P4232
	mm2	25 Pmm2			71 <i>Immm</i>			117 $P\overline{4}b2$			163 $P\overline{3}1c$			209	F432
		26 <i>Pmc</i> 2 ₁			72 Ibam			118 $P\overline{4}n2$			164 $P\overline{3}m1$			210	F4132
		27 Pcc2			73 Ibca			119 <i>I</i> 4 <i>m</i> 2			165 $P\overline{3}c1$			211	<i>I</i> 432
		28 Pma2			74 Imma			120 $I\overline{4}c2$			166 $R\overline{3}m$			212	P4332
		29 <i>Pca</i> 2 ₁	t	4	75 P4			121 $I\overline{4}2m$			167 $R\overline{3}c$			213	P4132
		30 Pnc2			76 <i>P</i> 4 ₁			122 $I\overline{4}2d$	h	6	168 <i>P</i> 6			214	<i>I</i> 4 ₁ 32
		31 <i>Pmn</i> 2 ₁			77 P4 ₂		4/mmm	123 <i>P4/mmm</i>			169 <i>P</i> 6 ₁		$\overline{4}3m$	215	$P\overline{4}3m$
		32 <i>Pba</i> 2 ₁			78 <i>P</i> 4 ₃			124 <i>P4/mcc</i>			170 P65			216	$F\overline{4}3m$
	ľ	33 <i>Pna</i> 2 ₁			79 <i>I</i> 4			125 <i>P</i> 4/ <i>nbm</i>			171 <i>P</i> 6 ₂			217	$I\overline{4}3m$
		34 <i>Pnn</i> 2			80 <i>I</i> 4 ₁			126 P4/nnc			172 <i>P</i> 6 ₄			218	$P\overline{4}3n$
		35 <i>Cmm</i> 2		4	81 $P\overline{4}$			127 <i>P4/mbm</i>			173 <i>P</i> 6 ₃			219	$F\overline{4}3c$
		36 <i>Cmc</i> 2 ₁			$82 I\overline{4}$			128 P4/mnc		$\overline{6}$	174 $P\overline{6}$			220	$I\overline{4}3d$
		37 <i>Ccc</i> 2		4/m	83 <i>P4/m</i>			129 <i>P4/nmm</i>		6/ <i>m</i>	175 <i>P6/m</i>		$m\overline{3}m$	221	$Pm\overline{3}m$
		38 Amm2			84 <i>P</i> 4 ₂ / <i>m</i>			130 P4/nnc			176 <i>P</i> 6 ₃ / <i>m</i>			222	$Pn\overline{3}n$
		39 Aem2			85 <i>P</i> 4/ <i>n</i>			131 <i>P</i> 4 ₂ / <i>mmc</i>		622	177 <i>P</i> 622			223	$Pm\overline{3}n$
		40 Ama2			86 <i>P</i> 4 ₂ / <i>n</i>			132 <i>P</i> 4 ₂ / <i>mcm</i>			178 <i>P</i> 6 ₁ 22			224	$Pn\overline{3}m$
		41 <i>Aea</i> 2			87 <i>I</i> 4/ <i>m</i>			133 <i>P</i> 4 ₂ / <i>nbc</i>			179 <i>P</i> 6 ₅ 22			225	$Fm\overline{3}m$
		42 <i>Fmm</i> 2			88 I4 ₁ /a			134 <i>P</i> 4 ₂ / <i>nnm</i>			180 <i>P</i> 6 ₂ 22			226	$Fm\overline{3}c$
		43 <i>Fdd</i> 2		422	89 <i>P</i> 422			135 <i>P</i> 4 ₂ / <i>mbc</i>			181 <i>P</i> 6 ₄ 22			227	$Fd\overline{3}m$
		44 Imm2			90 <i>P</i> 42 ₁ 2			136 P4 ₂ /mnm			182 <i>P</i> 6 ₃ 22			228	$Fd\overline{3}c$
		45 <i>Iba</i> 2			91 <i>P</i> 4 ₁ 22			137 <i>P</i> 4 ₂ / <i>nmc</i>		6 <i>mm</i>	183 <i>P6mm</i>			229	$Im \overline{3}m$
		46 Ima2			92 <i>P</i> 4 ₁ 2 ₁ 2			138 P4 ₂ /ncm			184 <i>P6cc</i>			230	$Ia\overline{3}d$

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

Wyckoff sites: List of the different sites from the most general (*i.e.* less symmetrical) to the less general (*i.e.* most symmetrical: special position)

UCSD for WWW - Mozilla Firefox	ICSD for WW	W : Detail	s - Mozilla	Firefox				×			
<u>Fichier</u> Éditio <u>n</u> <u>A</u> ffichage <u>H</u> istorique <u>M</u> arque-pages <u>O</u> utils <u>?</u>	icsd.il	icsd.ill.eu/icsd/details.php?id[]=424625									
CSD for WWW											
💽 🗲 🗰 🖉 icsd.ill.eu/icsd/index.php?action=Search&page=1&nb_rows=10ℴ_by=yearDesc&	lau			CSD for	www						
		j	Detail	s of the se	elected ent	ries					
O Mn	Print 1 en CC=Collection [Al2MgO4]=S ***Click the symbol***. CC=168694	try selec n Code: tructure ANX, P Help	ted. [AB2X4]= Type: earson c CIF	=ANX Form: [cF5 or Wyckoff Sym ▼ Export	6]=Pearson: [e d bol to find struc Bonds Patt	a]=Wyckoff Syn tures with that ern Structure	ibol:				
	Title	Rapid s perovs	synthesis kite phas	of room temper ses by the soluti	ature ferromagne	etic Ag-doped La ethod.	Mn O3	ш			
	Authors	Bellakk	i, M.B.;Sł	nivakumara, C.;V	asanthacharya, I	N.Y.;Prakash, A.S	5.				
	Reference	Materia Link XI	als Resea Ref SCO	arch Bulletin (201 PUS SCIRUS Go	0) 45 , 1685-169 ogle	1					
	Compound	La1 Mr [GdFe0	n <mark>1 03</mark> - L D3]	anthanum triox	omanganate <mark>(AB</mark>	X3] [oP20] [d o	2 b]				
	Cell	5.477(6 PBNM	5), 5.524 (62) V=	(4), 7.805(6), 90 23 <mark>6.1</mark> 4)., 90., 90.						
	Remarks	Remarks R=0.046000 : RVP XDP TYP =GdFeO3 : TEM =2 At least one temperature factor missing in the				: aper.					
	Atom (site)	Oxid.		x, y, z, B, Occ	upancy						
Magnetic order stu	io La1	(4c)	3	0.005(12)	0.0120(5)	0.25	0 1	-			
Hauback, B.C.; Fjellvag, H.; Sakai, N.; Magnetic order stu	di Mn1	(4b)	3	0.5	0.	0.	0 1				
Page : [1](8 results) 10 • results per page.	01	(4c)	-2	0.0109(7)	0.4869(6)	0.25	0 1				
http://icsd.ill.eu/icsd/index.php		(80)	-2	0.7500(8)	0.2803(6)	0.00/5(3)	0 1	•			

- part II -

DIFFRACTION CRYSTALLOGRAPHY IN RECIPROCAL SPACE

An incident beam of X-rays or neutrons can be considered as a plane wave.

For an incident beam to be diffracted by a crystal, its wavelength must be of the same order of magnitude than the inter-atomic distances (a few angströms).

Medecine (X-ray): 0.2 Å $\leq \lambda \leq 0.5$ Å Crystallography (X-ray & neutrons): 0.5 Å $\leq \lambda \leq 10$ Å

 \rightarrow visible light cannot be scattered by a single crystal (4000 Å < λ < 8000 Å)

II.1. The reciprocal space: Definition

The reciprocal lattice is defined as a network of points in the Fourier space (Q-space) which are the extremities of vectors: $\vec{\tau} = h \vec{a}^* + k \vec{b}^* + / \vec{c}^*$ with \vec{a}^* , \vec{b}^* , and \vec{c}^* the unit vectors of the reciprocal lattice, and *h*, *k*, / integers.

$$\vec{a}^{*} = C \frac{\vec{b} \wedge \vec{c}}{V} \longrightarrow \vec{a}^{*} \perp \vec{b} \text{ and } \vec{c}$$
$$\vec{b}^{*} = C \frac{\vec{c} \wedge \vec{a}}{V} \longrightarrow \vec{b}^{*} \perp \vec{c} \text{ and } \vec{a}$$
$$\vec{c}^{*} = C \frac{\vec{a} \wedge \vec{b}}{V} \longrightarrow \vec{c}^{*} \perp \vec{a} \text{ and } \vec{b}$$

where C is a constant and V is the volume of the unit cell in the direct space:

$$V = (\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \land \vec{b}).\vec{c} = \vec{a}.(\vec{b} \land \vec{c})$$

In solid state physics, $C = 2\pi$ In crystallography, C = 1

for
$$C = 1$$

$$\vec{a}^{*} \cdot \vec{a} = \vec{b}^{*} \cdot \vec{b} = \vec{c}^{*} \cdot \vec{c} = 1$$

$$\vec{a}^{*} \cdot \vec{b} = \vec{a}^{*} \cdot \vec{c} = 0$$

$$\vec{b}^{*} \cdot \vec{a} = \vec{b}^{*} \cdot \vec{c} = 0$$

$$\vec{c}^{*} \cdot \vec{a} = \vec{c}^{*} \cdot \vec{b} = 0$$

II.1. The reciprocal space: *Examples*

• Orthorhombic (
$$a \neq b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$)

• Hexagonal ($a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$)

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.1. The reciprocal space: First Brillouin zone

First Brillouin zone (BZ) = the smallest polyhedron enclosed by the perpendicular bisectors of the nearest neighbors to a given point of the reciprocal space.

II.1. The reciprocal space: Properties

• <u>Direct space</u> (DS) used to describe the <u>atomic positions</u> in the crystal (lengths in Å) <u>Reciprocal space</u> (RS) used to describe the positions of the diffracted peaks, phonons, magnons, ... (lengths in $Å^{-1}$)

• Each family of rows [*hkl*]* in RS is \perp to the family of net planes (*hkl*) in the DR: $\vec{n}_{hkl}^{*}//\vec{d}_{hkl}$ and $\vec{n}_{hkl}^{*}.d_{hkl} = 1$ each family of net planes (*uvw*)* in RS is \perp to the family of rows [*uvw*] in DS: $\vec{d}_{uvw}^{*}//\vec{n}_{uvw}$ and $\vec{d}_{uvw}^{*}.n_{uvw} = 1$

• The reciprocal cell of a primitive direct cell is primitive, The reciprocal cell of a non primitive direct cell is non primitive.

<u>Examples</u>:

cubic $P \longrightarrow$ cubic Pcubic $I \longrightarrow$ cubic Fcubic $F \longrightarrow$ cubic I

II.1. The reciprocal space: Properties

• The *d*-spacing d_{hkl} for the net planes (*hkl*) is equal to the inverse of the length of the reciprocal lattice vector $\vec{n}_{hkl} = \vec{\tau} = h \vec{a}^* + k \vec{b}^* + / \vec{c}^*$

$$d'_{hkl} = \frac{1}{\left|\vec{\tau}\right|} \implies d'_{hkl} = \frac{1}{\sqrt{\left(h\vec{a}^* + k\vec{b}^* + l\vec{c}^*\right) \cdot \left(h\vec{a}^* + k\vec{b}^* + l\vec{c}^*\right)}}$$

Examples: Orthorhombic cell:
$$d'_{hkl} = \frac{1}{\sqrt{h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2}}} = \frac{1}{\sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}}$$

Cubic cell:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Hexagonal cell:

$$d'_{hkl} = \frac{1}{\sqrt{h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2hk \cos 60^{\circ} a^{*2}}}$$
$$= \frac{1}{\sqrt{\frac{4}{3a^2} (h^2 + k^2 + hk) + \frac{l^2}{c^2}}}$$

39

a- <u>Bragg's law</u>

The beams scattered by any lattice nodes must be in phase in order to get <u>constructive</u> <u>interferences</u> \rightarrow difference in path δ has to be a multiple of the wavelength λ

Diffraction by a 2D lattice of nodes \Leftrightarrow reflection on the net plane containing the nodes

A family of (*hk*/) net planes of the crystal diffracts with different orders *n* only for discrete angle values given by the Bragg's law \rightarrow Bragg peaks *hk*/

•
$$n\lambda \leq 2d_{hkl} \Rightarrow \lambda$$
 musn't be too large
• $n\lambda = 2d_{hkl} \sin\theta$
for a Plattice:
 $h, k, l = coprime integers$
 $\Leftrightarrow \begin{array}{l} \lambda = 2d_{h'k'l'} \sin\theta & \text{with } d_{h'k'l'} = \frac{d_{hkl}}{n} \\ \Rightarrow h' = nh, k' = nk, l' = nl \\ h', k', l' are now any integers \end{array}$

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

 $\vec{k_0}$ = incident wave vector \vec{k} = diffracted wave vector

scattering vector
$$\vec{Q} = \vec{k} - \vec{k_0}$$
 $|\vec{k_0}| = |\vec{k}| = \frac{1}{\lambda}$

42

By construction (Descartes law and
$$k = k_0 = \frac{1}{\lambda}$$
):
we see that $\vec{Q} \parallel \vec{d}_{hkl}$ and $Q = \frac{2 \sin \theta}{\lambda}$
The Bragg's law $n\lambda = 2d_{hkl} \sin \theta$
can thus be rewritten: $Q = \frac{n}{d_{hkl}}$

 \Rightarrow the diffraction condition can be reformulated as follows:

The scattering vector must be a vector of the reciprocal lattice Its extremity must be a point from a row $[hk/]^*$ passing through the origin of the RS \perp to the family of (*hkl*) net planes in DS: $\vec{Q} = n(h\vec{a}^* + k\vec{b}^* + l\vec{c}^*) = h'\vec{a}^* + k'\vec{b}^* + l'\vec{c}^*$

b- Ewald's construction

This construction allows to predict all directions of diffraction, which, for a given wavelength, only depend on the lattice parameters of the studied crystal.

Let us consider a monochromatic incident beam of X-rays or neutrons

Diffraction occurs if \vec{Q} is a vector of the reciprocal lattice

Î

Diffraction occurs each time a lattice node intersects the Ewald sphere

II.2. Diffraction by an atom: Scattered amplitude

- **a-** <u>X-rays</u> Photons scattered by the electronic cloud of atoms: electronic interaction Size of electronic cloud \approx a few $A \approx \lambda$ (X-rays)
 - \rightarrow destructive interferences (more and more as Q increases)

$$f(\vec{Q}) = \int_{V} \rho(\vec{r}) e^{2i\pi \vec{Q}.\vec{r}} dV$$

Scattered amplitude for X-rays

- = Fourier transform of the electronic density
- = atomic scattering factor or atomic form factor

II.2. Diffraction by an atom: Scattered amplitude

b- <u>Neutrons</u> Neutrons scattered by the nucleus of atoms: nuclear interaction* Size of nucleus $\langle \lambda (neutrons) \rightarrow nuclear density \rho(r) = \delta(r)$

Dirac function $\delta(r)$ in *r*-space \Rightarrow constant in *Q*-space

b(Q) = b = Cst

Scattered amplitude for neutrons = Fourier transform of the nuclear density

= scattering length or Fermi length

*Neutrons are also scattered by unpaired electrons (spins): magnetic interaction

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.2. Diffraction by a crystal: Structure factor

$$\mathcal{F}(\vec{Q}) = \sum_{j=1}^{N} a_j e^{2i\pi \vec{Q}.\vec{r}_j} e^{-W_j}$$

Scattered amplitude by a unit cell = Fourier transform of the atomic density of the cell = structure factor

with
$$\begin{cases} a_j = r_j(Q) \text{ or } D_j \\ \vec{Q} = h\vec{a}^* + k\vec{b}^* + l\vec{c}^* \\ \vec{r}_j = x_j\vec{a} + y_j\vec{b} + z_j\vec{c} \end{cases}$$

and
$$e^{-W_j} = e^{-B_j} \frac{\sin^2 \theta}{\Lambda^2}$$

Debye-Waller factor in which $B_j = \langle u_j^2 \rangle$ reflects the amplitude of thermal vibration

We find again the two concepts that characterize a crystal

II.2. Diffraction by a crystal: Structure factor

The phase problem

In the most general case, the structure factor is a complex number and can be written as follows: $F(\vec{Q}) = |F(\vec{Q})| e^{i\phi}$

The structure factor is the quantity which we are interested in: it contains the atomic positions x_j , y_j , z_j .

We measure: $\mathcal{I}(\vec{Q}) = \mathcal{F}^{*}(\vec{Q}) \cdot \mathcal{F}(\vec{Q}) = \left| \mathcal{F}(\vec{Q}) \right|^{2}$

 \Rightarrow we do not access to the scattered amplitude but only to the intensity: the information concerning the phase is lost.

Effect in the RS of a symmetry operation from the DS:

- Symmetry of the reciprocal space given by the Laue class (inversion always there) *
- Systematic extinctions given by the space group
- → they lead to a systematic absence of intensity of Bragg reflections concerned by this extinction rule, and this, independently from the atomic positions in the cell.

Lattice type (if not P) \rightarrow "artificial" extinction (due to the fact that a centered cell was chosen) Symmetry operations containing a glide translation* = non symmorphic operations

48

• Particular extinctions given by the motif *

they concern atoms^{*} occupying some special Wyckoff sites \rightarrow the atoms occupying such special positions give a null contribution to the intensity of Bragg reflections concerned by this extinction rule.

* provided the nucleus (neutrons) or electronic cloud (X-rays) of the atoms is spherical * provided the Fermi length (neutrons) or atomic form factor (X-rays) is real

Example of a glide plane $a \perp [001]$ at z = 1/4

 $\rightarrow \text{Reflection trough a plane} \perp [001] \text{ with the glide translation } \frac{a}{2} \\ \rightarrow \text{equivalent positions:} \quad \begin{pmatrix} x_j \ y_j \ z_j \end{pmatrix} \text{ and } \quad \begin{pmatrix} x_j + \frac{1}{2} \ y_j \ \overline{z}_j + \frac{1}{2} \end{pmatrix}$

The structure factor $F(hkl) = \sum_{j=1}^{N} a_j e^{2i\pi(hx_j + ky_j + lz_j)}$ can thus be split in two parts:

$$\rightarrow \mathsf{F}(hkl) = \sum_{j=1}^{N/2} a_j \left\{ e^{2i\pi \left(hx_j + ky_j + lz_j\right)} + e^{2i\pi \left[h\left(x_j + \frac{1}{2}\right) + ky_j + l\left(\frac{1}{2} - z_j\right)\right]} \right\}$$

 \rightarrow F(*hk*/) cannot be completely factorized except for /= 0

$$\rightarrow F(hk0) = \begin{bmatrix} 1 + e^{i\pi h} \end{bmatrix} \sum_{j=1}^{N/2} a_j e^{2i\pi (hx_j + ky_j)}$$

$$F(hk0) = 0 \quad \text{if} \quad h = 2n + 1$$

$$F(hk0) \neq 0 \quad \text{if} \quad h = 2n$$

$$F(hk0) \neq 0 \quad \text{if} \quad h = 2n$$

$$F(hk0) \neq 0 \quad \text{if} \quad h = 2n$$

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

Systematic extinctions due to the lattice type

Primitive lattice: no extinction Centered lattice: direct cell *m* times too large \rightarrow reciprocal cell *m* times too small \rightarrow systematic absence of intensity on some *hkl* spots

Ex. I lattice \rightarrow additional lattice translation $\frac{1}{2}(\vec{a} + \vec{b} + \vec{c})$ in DS $\rightarrow 2(\vec{a}^* + \vec{b}^* + \vec{c}^*)$ in RS \rightarrow reflection condition for hk/: h + k + l = 2n

Systematic extinctions due to non symmorphic symmetry operations

Ex. plane $a \perp \vec{c} \rightarrow \text{extinction concerning Bragg peaks } hk0 (plane <math>\perp \vec{c}^* \text{through } O^*)$ & glide translation $\vec{t} = \frac{1}{2}\vec{a}$ in DS $\rightarrow \vec{t}^* = 2\vec{a}^*$ in RS \rightarrow reflection condition for hk0: h = 2n

Ex. axis $2_1/l\vec{b} \rightarrow \text{extinction concerning Bragg peaks } 0k0 (row/l\vec{b} * through O*)$ & glide translation $\vec{t} = \frac{1}{2}\vec{b}$ in DS $\rightarrow \vec{t}^* = 2\vec{b}^*$ in RS \rightarrow reflection condition for 0k0: k = 2n

Example: Space group Cc (glide plane $c \perp \vec{b}$)

- Symmetry: Laue class: $2/m \rightarrow same intensity for: hkl, hkl, hkl, mirror m \perp \vec{b}$ $\frac{hkl}{2} \text{ previous Bragg peaks} \times \overline{1}$
- Reflection conditions :
 - C-centering \rightarrow reflection condition:hk/ with h+k=2nc glide plane \rightarrow reflection condition:h0/ with /=2n

The International Tables for Crystallography

• Example: Pnma

Reflection conditions

General

If the reflection condition is not fulfilled, the diffracted intensity is null

Special

The contribution to the diffracted intensity of atoms located on special positions is null if the condition is not fulfilled

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.3. Experiments: How to solve a crystallographic structure

• Symmetry of the diffraction pattern \rightarrow Laue class

2 Positions of Bragg reflections \rightarrow Lattice parameters

Direction of the diffracted beams (2 θ) \Rightarrow Better precision at large angle $\lambda = 2 d_{hkl} \sin \theta \Rightarrow long$ wavelength and/or large Miller indices (small d_{hkl})

3 Extinction rules \rightarrow Possible space group(s)

4 Intensities of the Bragg peaks \rightarrow Structure determination

There are as many F(hkl) as measured hkl Bragg peaks (h, k, l any integers) \Rightarrow measure up to large Q $\lambda = 2 d_{hkl} \sin \theta \Rightarrow Q \leq \frac{2}{\lambda} \Rightarrow$ short wavelength (in particular for large unit cells)

🕂 Phase problem: *Patterson function, direct methods, ...*

II.3. Experiments: How to solve a crystallographic structure

• Symmetry of the diffraction pattern \rightarrow Laue class

 \rightarrow Laue diffraction

2 Positions of Bragg reflections \rightarrow Lattice parameters

 \rightarrow Powder or single-crystal diffraction

3 Extinction rules \rightarrow Possible space group(s) \rightarrow single-crystal diffraction

4 Intensities of the Bragg peaks \rightarrow Structure determination

 \rightarrow Laue, powder or single-crystal diffraction

/! Phase problem: *Patterson function, direct methods, ...*

II.3. Experiments: Technique 1 - powder diffraction

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.3. Experiments: Technique 1 - powder diffraction

X-ray powder diffractometer @ SLS

Neutron powder diffractometer @ ILL

56

II.3. Experiments: Technique 1 - powder diffraction

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.3. Experiments: Technique 2 - single-crystal Laue diffraction

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

II.3. Experiments: Technique 2 - single-crystal Laue diffraction

OrientExpress @ ILL

BaCo₂V₂O₈ Laue pattern showing the symmetries

 \rightarrow diffraction pattern = Laue diagram evidencing the symmetry planes and axes in reciprocal space

 \rightarrow Determine the Laue class, align a crystal, ...

59

II.3. Experiments: Technique 2 - single-crystal Laue diffraction

Vitamin B12 measured on Vivaldi (Laue diffractometer) Nearly 10000 measurable Bragg reflections 8-hour exposure, 10mm³ crystal

Wagner, Luger, Mason, McIntyre (2002) - ILL VIVALDI @ ILL

Cristallographie et techniques expérimentales associées - Béatrice Grenier Ecole du GDR MICO, Grenoble, mai 2014 -60

II.3. Experiments: Technique 3 - single-crystal diffraction

four circle / normal beam

61

II.3. Experiments: Technique 3 - single-crystal diffraction (4-circle)

Ecole du GDR MICO, Grenoble, mai 2014 - Cristallographie et techniques expérimentales associées - Béatrice Grenier

62

 $\omega_{\rm K}$

 $2\theta_{\rm K}^{\downarrow}$

II.3. Experiments: Technique 3 - single-crystal diffraction (4-circle)

Chiral Heptanuclear Europium Wheels Space group C2, a = 45.7446 Å, b = 31.0966 Å, c = 45.7325 Å, $\beta = 92.945^{\circ}$, Z = 8

Bozoklu et al. (2010) - ESRF

63

II.3. Experiments: Technique 3 - single-crystal diffraction (normal beam)

BaCo₂V₂O₈ (body-centered tetragonal) Antiferromagnetic ordering Incommensurate/magnetic structure ×0.5 H = 0.0 TH = 4.1 TH = 6.0 TH = 8.0 T 0.0 0.1 0.2

Q, (r.l.u.)

0.3

0.4

64

II.3. Experiments: Technique 4 - single-crystal diffraction (normal beam)

Collect of magnetic Bragg peaks (rocking curves)

Refinement of the magnetic structure using *e.g.* Fullprof

Thank you!

Any questions?

